Detecção de embarcações por imagens nos rios da Amazônia
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Computação Brasil UFAM Programa de Pós-graduação em Informática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/5474 |
Resumo: | O monitoramento fluvial é um trabalho intensivo e necessário a fim de evitar possíveis ameaças como pirataria e agressão ambiental. Normalmente, essa tarefa é realizada manualmente por um operador humano que analisa monitores de vídeo por longos períodos de tempo, fator que torna a tarefa longa, maçante e sujeita a erros. Na Amazônia, o monitoramento fluvial é ainda mais desafiador devido à grande extensão territorial da região e ao fato desta possuir a maior bacia hidrográfica do planeta. Dentre as possibilidades de tratar este problema existe a utilização de sensoriamento remoto, em geral utilizando imagens aéreas obtidas por satélites ou veículos aéreos, tripulados ou não. Diante desse contexto, esta dissertação propõe um método computacional capaz de detectar a movimentação de embarcações em um ambiente típico dos rios da Amazônia, pois os métodos existentes na literatura não se adequam ao cenário amazônico devido a inúmeros fatores, como por exemplo, a diversidade de composição de fundo da região. Além disso, métodos propostos na literatura foram desenvolvidos para ambientes com mar aberto, onde normalmente há apenas embarcações e água em cena. Neste trabalho, são usadas técnicas de processamento digital de imagens para a detecção do objeto em movimento e técnicas de aprendizagem de máquina para determinar a probabilidade do objeto observado ser um barco ou não. Essa dupla detecção reduz os falsos alertas emitidos pelo método proposto. Os experimentos realizados mostram que o método obteve 79% de acurácia e 91% de precisão, considerando todas as imagens, e precisão de 71% em cenas com embarcações, mostrando-se eficiente ao ser comparado com outras estratégias. |