Cooperative localization improvement in vehicular ad hoc networks.

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Lobo, Felipe Leite
Outros Autores: http://lattes.cnpq.br/1756041829894004
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/7714
Resumo: In Vehicular Ad Hoc Networks (VANets), a precise localization system is a crucial factor for several critical safety applications. Even though the Global Positioning System (GPS) can be used to provide the position estimation of vehicles, it still has an undesired error that can increase even more in some areas, such as tunnels and indoor parking lots, making it unreliable and unfeasible for most critical safety applications. In this work, we present a new position estimation technique by two algorithms, the CoVaLID (Cooperative Vehicle Localization Improvement using Distance Information), which improves GPS positions of nearby vehicles and minimize their errors using Extended Kalman Filter (EKF) to perform Data Fusion of both GPS and distance information, and the COLIDAP that uses Particle Filter (PF). Our solution also uses distance information to assess the position accuracy related to three different aspects: the number of vehicles, vehicle trajectory, and distance information error. For that purpose, we use a weighted average method to put more confidence in distance information given by neighbors closer to the target.We implement and evaluate the performance of CoVaLID using realworld data, as well as discuss the impact of different distance sensors in our proposed solution. Our results clearly show that our algorithms are capable of reducing the GPS error by 63%, and 53% when compared to the state-of-the-art VANet LOCation Improve (VLOCI) algorithm.