Reconhecimento das configurações de mão de libras baseado na análise de discriminante de fisher bidimensional utilizando imagens de profundidade
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Faculdade de Tecnologia Brasil UFAM Programa de Pós-graduação em Engenharia Elétrica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/5011 |
Resumo: | As pessoas surdas comunicam-se com outras pessoas por meio da Língua de Sinais. Essa interação restringe-se somente a pessoas que conhecem a Língua que, via de regra, são as pessoas surdas. O fato é que existem muitas pessoas, notadamente das áreas de saúde, educação e lazer, que necessitam interagir com os surdos usando Língua de Sinais e possuem pouca ou nenhuma proficiência na Língua de Sinais. Então, a inclusão social do surdo é seriamente afetada, pois ele não é capaz de se fazer entender. Esta dissertação apresenta uma metodologia para o reconhecimento automatizado dos gestos que representam as configurações de mãos da Língua Brasileira de Sinais - LIBRAS. A abordagem inicial consistiu na construção conjunta de um banco de imagens das configurações de mão capturada através de uma câmara de profundidade, Kinect®. A região de interesse, a mão realizando o gesto, foi extraída utilizandose as seguintes técnicas: K-means e Transformada de Distância. O processo de Reconhecimento dos gestos foi dividido em duas etapas: extração de características e classificação dos gestos. Dessa forma, foi aplicado a técnica de redução de dimensionalidade, 2D2LDA para a obtenção de um conjunto de características, as quais foram submetidas a um classificador, o k-vizinhos mais próximos (kNN). O método proposto é capaz de segmentar e reconhecer as 61 configurações de mão da Língua Brasileira de Sinais. A taxa média de acerto alcançada foi de 96,10%. Como o dispositivo de captura é insensível a luminosidade, fundo e cores das roupas e da pele, a aplicação desenvolvida adapta-se sem necessidade de modificações a qualquer outro ambiente de captura |