Reconhecimento de gestos de membros superiores utilizando sensores de movimento e fotopletismografia

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Rylo, Marcos Negreiros
Outros Autores: http://lattes.cnpq.br/0695393115895978
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Ciências Exatas
Brasil
UFAM
Programa de Pós-graduação em Agronomia Tropical
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/9571
Resumo: Este trabalho visa avaliar as técnicas de aprendizagem de máquinas usando fotopletismografia de baixa frequência associada a sensores de movimento de dispositivos vestíveis, tais como relógios inteligentes, no reconhecimento de gestos do pulso e dos dedos. Após a segmentação dos gestos baseado na identificação de artefatos de movimento no sinal de fotopletismografia (PPG), modelos de classificação utilizando Máquinas de Vetores de Suporte, Florestas Aleatórias e XgBoost foram treinados utilizando atributos estatísticas extraídas de sinais PPG e sensores de movimento. O projeto aponta que frequências de 25 Hz são adequadas para o processo de reconhecimento, alcançando resultados de até 82% precisão e 82% de revocação.