Sobre problemas de lista coloração e a propriedade de selecionabilidade em grafos
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Computação Brasil UFAM Programa de Pós-graduação em Informática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/5650 |
Resumo: | Nesta dissertação, o problema da lista coloração e a propriedade da selecionabilidade em grafos são abordados. Lista coloração é uma generalização do problema da coloração de vértices em grafos, e tal como este problema clássico, consiste em colorir um grafo simples de modo que vértices adjacentes possuam cores distintas, mas, respeitando- se a restrição adicional de que cada vértice possui uma lista restrita de possíveis cores a serem usadas. Tal problema possui algumas variações, como a (g;μ)-coloração, que envolve listas sequenciais com limite inferior e superior conhecidos. A k-selecionabilidade consiste em determinar o menor tamanho de lista k para o qual sempre há uma lista coloração, seja qual for a distribuição de lista no grafo. Nesta dissertação, se investigou a correlação entre a propriedade da k-selecionabilidade e a (g;μ)-coloração, sendo definida a propriedade de k-(g;μ)-selecionabilidade. Com isto, foram também estudadas algumas técnicas de prova em selecionabilidade, aplicadas para se determinar a k-(g;μ)-selecionabilidade para classes específicas de grafos, como a técnica de degeneração em grafos, usada para provar que grafos periplanares são 3-(g;μ)-selecionáveis e a técnica de Marshal Hall, usada para provar que grafos bipartidos completos são 2-(g;μ)-selecionáveis. O resultado mais geral, obtido através de uma prova formal, consistiu em determinar que se um grafo é k-colorível, então tal grafo também é k-(g;μ)-selecionável, deixando de ser Pp 2-completo para ser NP-completo. Adicionalmente, foram estudados e implementados alguns algoritmos para determinar a lista coloração e k-selecionabilidade em grafos simples gerais |