Aplicação em modelos de variação autorregressiva condicional baseada na distribuição Birnbaum-Saunders

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Lopes, Erico Jander da Silva
Outros Autores: http://lattes.cnpq.br/3711335648910757
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Ciências Exatas
Brasil
UFAM
Programa de Pós-graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/7077
Resumo: O modelo de variação autorregressivo condicional (CARR), proposto por Chou (2005) se mostrou eficiente para estimar a volatilidade do preço de ativos. Entretanto, a estimativa requer uma densidade do erro adequada, onde se usa comumente a distribuição deWeibull. Xie & Wu (2017) propôs um modelo baseado na distribuição gamma (GCARR), com resultados satisfatórios em relação a redução de problema de inlier e outlier. Neste trabalho, propomos o modelo de variação autorregressiva condicional baseado na distribuição Birnbaum-Saunders (BSCARR). Implementamos uma abordagem baseada no método da máxima verossimilhança para obter as estimativas dos parâmetros e derivamos medidas para análise de resíduos e diagnóstico. Em seguida fizemos um estudo via simulações e Monte Carlo com o objetivo de avaliar o desempenho dos estimadores de máxima verossimilhança do modelo proposto. Por fim, ilustramos a metodologia proposta usando um conjunto de dados reais.