Automated verification and refutation of quantized neural networks

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Sena, Luiz Henrique Coelho
Outros Autores: http://lattes.cnpq.br/1493664223350422
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Amazonas
Faculdade de Tecnologia
Brasil
UFAM
Programa de Pós-graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/8845
Resumo: Artificial Neural Networks (ANNs) are being deployed for an increasing number of safety- critical applications, including autonomous cars and medical diagnosis. However, con- cerns about their reliability have been raised due to their black-box nature and apparent fragility to adversarial attacks. These concerns are amplified when ANNs are deployed on restricted system, which limit the precision of mathematical operations and thus in- troduce additional quantization errors. Here, we develop and evaluate a novel symbolic verification framework using software model checking (SMC) and satisfiability modulo theories (SMT) to check for vulnerabilities in ANNs and mainly in Multilayer Perceptron (MLP). More specifically, here is proposed several ANN-related optimizations for SMC, including invariant inference via interval analysis, slicing, expression simplifications, and discretization of non-linear activation functions. With this verification framework, we can provide formal guarantees on the safe behavior of ANNs implemented both in floating- and fixed-point arithmetic. In this regard, the current verification approach was able to verify and produce adversarial examples for 52 test cases spanning image classifica- tion and general machine learning applications. Furthermore, for small- to medium-sized ANN, this approach completes most of its verification runs in minutes. Moreover, in con- trast to most state-of-the-art methods, the presented approach is not restricted to specific choices regarding activation functions and non-quantized representations. Experiments show that this approach can analyze larger ANN implementations and substantially re- duce the verification time compared to state-of-the-art techniques that use SMT solving.