Spatial-temporal reasoning in symbolic neural network for semantic interpretation of videos

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Tenório, Milena Rodrigues
Outros Autores: http://lattes.cnpq.br/6956100919315911
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/9003
Resumo: The Semantic Video Interpretation field of study looks for ways to model the information in videos. Existing methods can be divided into generic and specialized methods; the former can efficiently categorize information while the latter does not perform well for generic data. One way for researchers to deal with this impasse, in other fields of study, is to use the knowledge and basic restrictions on it. For this, we use neural-symbolic reasoning. Our hypothesis is to use a neural-symbolic network to extract information from images in a video to model this information, and finally perform reasoning to extract the semantic description. For this purpose, three main steps were chosen: (1) identification of the objects in the video images, (2) identification of the spatial relations in frame groups, and (3) analysis of the temporal relations found.