Avaliação de critérios para a seleção do número de componentes em misturas finitas de normais assimétricas
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Ciências Exatas BR UFAM Programa de Pós-graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/3677 |
Resumo: | Este trabalho tem por objetivo avaliar alguns critérios de informação para seleção de modelos no contexto de misturas finitas de normais assimétricas. Os critérios analisados foram o Critério de Informação de Akaike-AIC , Critério de Informação Bayesiano - BIC e Critério de Determinação Eficiente - EDC . A avaliação feita a respeito do desempenho apresentado por estes critérios se deu através de um estudo de simulação, em que utilizamos o algoritmo EM para encontrarmos as estimativas de máxima verossimilhança para os parâmetros do modelo com as quais empregamos os critérios. Foi também realizado uma aplicação da teoria desenvolvida para uma modelagem com dados reais utilizando dois conjuntos de dados já analisado anteriormente na literatura. Os resultados obtidos indicaram que, assintoticamente, os três critérios tendem a avaliar corretamente o número de componentes necessárias, mas para amostras pequenas o AIC apresenta desempenho inferior ao BIC e EDC, sendo que os dois últimos apresentam desempenho muito semelhante. |