Modelos e heurísticas para o problema de controle de densidade em redes de sensores sem fio planas
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Computação BR UFAM Programa de Pós-graduação em Informática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/2905 |
Resumo: | As Redes de Sensores Sem Fios (RSSFs) são redes compostas por um grande número de nós de sensores. Estas redes necessitam de controle de densidade para garantir um melhor funcionamento, pois a alta concentração de nós sensores gera colisão de dados, interferências e consequentemente retransmissão de dados. Os nós sensores possuem limitações de energia, processamento e comunicação e por isto é interessante otimizar o consumo de energia da rede com o objetivo de estender seu tempo de vida. Esquemas de controle de densidade têm sido utilizados como recursos para prolongar o tempo de vida da rede. O Problema de Controle de Densidade em Redes de Sensores Sem Fios (PCD-RSSFs) consiste em minimizar a energia consumida pelos nós sensores ativos, escolhendo um subconjunto de nós que atenda os requisitos da aplicação e maximize a utilização dos recursos da rede. Este trabalho apresenta duas abordagens para tratar o PCD-RSSFs: Periódica e Multiperíodo. A Abordagem Periódica escolhe a melhor solução para um dado período, tendo uma visão local do tempo de vida da rede e repete este procedimento periodicamente. A Abordagem Multiperíodo consiste em definir um tempo esperado de vida da rede e dividí-lo em períodos. Para cada período a solução é escolhida levando em consideração os outros períodos, caracterizando uma visão global do tempo de vida da rede e dos períodos. Ambas as abordagens foram modeladas com Programação Linear Inteira e resolvidas por um software de otimização. Para a modelagem da Abordagem Periódica é proposta uma Relaxação Lagrangeana em conjunto com uma Heurística Lagrangeana onde a ideia é relaxar restrições difíceis com o intuito de deixar o problema mais simples de ser resolvido. Também é apresentado um Algoritmo Genético (AG) híbrido que utiliza Abordagem Periódica para gerar a solução de cada período e em seguida uma fase de refinamento baseada nos conceitos da Abordagem Multiperíodo. As heurísticas implementadas são comparadas com algoritmos da literatura e os resultados mostram que a combinação Relaxação Lagrangeana e Heurística Lagrangeana obtêm melhor desempenho tanto em consumo de energia quanto em tempo de solução. Além disso a Relaxação Lagrangeana gera limites inferiores para o PCD-RSSFs que podem ser utilizados para avaliação de outros algoritmos de controle de Densidade |