Mineração de Dados Educacionais: Previsão de notas parciais utilizando classificação

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Sousa, Marília Maria Bastos de Araújo Cavalcanti Feitosa Fava de
Outros Autores: http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8700858D4
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/6514
Resumo: O presente trabalho tem o intuito de apresentar a Mineração de Dados Educacionais e um experimento envolvendo previsão de provas parciais. O experimento é realizado através dos dados da disciplina de Introdução à Programação de Computadores da Universidade Federal do Amazonas e busca classificar os alunos de acordo com as notas obtidas, em no máximo três classes: satisfatório, insatisfatório e sem conceito (alunos evadidos). Como conclusão, tem-se uma análise quantitativa com os dados da previsão.