Learning to rank para busca em Comércio Eletrônico
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Computação Brasil UFAM Programa de Pós-graduação em Informática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.ufam.edu.br/handle/tede/6769 |
Resumo: | Métodos que geram funções de ordenação de resultados baseadas em aprendizagem de máquina têm sido amplamente utilizados em sistemas de busca para a web, como as utilizadas em motores de busca como o Google e Bing. No entanto, esses recursos não têm sido muito empregados ou estudados em outros contextos. É o caso, por exemplo, do comércio eletrônico, no qual, a interação de usuários com lojas virtuais produz dados como: quando um usuário acessou a página de uma loja pela primeira vez, que consultas realizou, quais produtos clicou, e o que comprou. Neste trabalho, propomos a utilização de métodos de aprendizagem de máquina para aprender funções de ordenação de resultados no contexto de comércio eletrônico. Estudamos formas alternativas de estimar a relevância de um resultado para uma dada consulta e realizamos experimentos utilizando dados extraídos de lojas de comércio eletrônico. Realizamos experimentos tanto com ambientes que denominamos offline, onde uma base de dados é montada com a abordagem tradicional de separa-la em treino, validação e teste, quanto em ambientes que denominamos online, onde pusemos versões distintas dos sistemas para funcionar em lojas com usuários em situações reais de compra. Apresentamos no estudo nossas conclusões a respeito dos experimentos realizados. |