Estimação Bayesiana em modelos de regressão T de student com erros nas variáveis, respostas multivariadas e censuras
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Ciências Exatas Brasil UFAM Programa de Pós-graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/5615 |
Resumo: | Apresentamos uma proposta de extensão para o modelo de regressão com erro nas variáveis usual em que tanto o vetor de respostas quanto a covariável estão sujeitos à censura. Assumimos que a distribuição conjunta da covariável e dos erros de observação é t de Student, que é uma alternativa ao modelo normal, porém com caudas pesadas. Um algoritmo do tipo Gibbs sampler é proposto para proceder a estimação Bayesiana dos parâmetros no modelo. Três estudos de simulação são realizados, mostrando a maior flexibilidade do modelo, em relação ao modelo sob normalidade, em ajustar dados com padrão de censura e caudas pesadas, além de uma aplicação em dados reais. |