Extração descentralizada de conhecimento associativo para internet das coisas

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Alencar, Márcio André da Costa
Outros Autores: http://lattes.cnpq.br/7247102045522245
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/7078
Resumo: A identificação dos padrões de comportamento do usuário é um dos recursos que pode ser incorporado à Internet das Coisas. Encontrar padrões e utilizá-los como conhecimento para a tomada de decisões pode proporcionar facilidade, conforto, praticidade e autonomia para a execução das atividades diárias. Embora a extração de conhecimento seja comum em ambientes inteligentes centralizados, sua execução em uma arquitetura descentralizada ainda é um desafio computacional relevante considerando as restrições de armazenamento e processamento dos dispositivos IoT. Esta dissertação descreve um método para minerar correlações implícitas entre os padrões de ações de dispositivos de IoT por meio de análise associativa embarcada. Com base nas métricas support, confidence e lift, o método identifica as correlações mais relevantes entre um par de ações de diferentes dispositivos e sugere ao usuário a integração entre elas por meio de solicitações HTTP. Resultados experimentais mostram que, em média, as regras mais relevantes para ambas as arquiteturas são as mesmas em 99,75% dos casos. Além disso, o método proposto identificou correlações relevantes que não foram identificadas pela arquitetura centralizada. Esta pesquisa enfatiza que a análise do padrão de ações do dispositivo é uma abordagem eficiente para fornecer um ambiente altamente integrado e inteligente, contornando os problemas do ponto único de falha e do armazenamento excessivo de dados em dispositivos IoT.