Reconhecimento de atividades humanas usando medidas estatísticas dos sensores inerciais dos smartphones

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Bragança, Hendrio Luis de Souza
Outros Autores: http://lattes.cnpq.br/7375456368369943, https://orcid.org/0000-0003-1479-1707
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/7126
Resumo: O reconhecimento de atividades humanas (RAH) tem emergido como uma tecnologia revolucionária para monitorar o estilo de vida das pessoas. Com a popularização dos smartphones essa tarefa tem sido possível através dos sensores embarcados (e.g. os sensores inerciais acelerômetro e giroscópio) que permitem o reconhecimento de diferentes tipos de atividades usando técnicas de aprendizagem de máquina. Os dados coletados pelos sensores são tratados com séries temporais e devem passar por diversas etapas até que o reconhecimento de atividades seja concluído. Assim, os dados devem ser processados, segmentados e transformados em um conjunto de características que representam as atividades desenvolvidas pelos usuários. Tais características são tradicionalmente expressas a partir de medidas matemáticas como, por exemplo, média, variância e desvio padrão, extraídas dos sinais dos sensores. Essa forma de reconhecer atividades que compõe o modo mais convencional, tem obtido êxito e levado a grandes avanços neste domínio nos últimos anos. Entretanto, o emprego dessa abordagem requer que cálculos sejam definidos manualmente com o apoio de um especialista no domínio. À medida que novas atividades surgem, os modelos de classificação gerados perdem desempenho, requerendo que o especialista gere novas características para representar bem as novas atividades. Assim, a adoção dessa abordagem tem afetado a capacidade de generalização dos modelos de reconhecimento com o tempo. Por esse motivo, as pesquisas mais recentes têm direcionado seus esforços em soluções que aprendem os padrões implícitos dos sinais (feature learning) e realizam o processo de extração de características de forma automática. Exemplos desses algoritmos são as redes neurais profundas e os algoritmos de representação simbólica. Em particular, os algoritmos de representação simbólica extraem características discretas automaticamente dos dados. Nesse contexto, este trabalho apresenta o método HAR-SR (do inglês, Human Activity Recognition based on Symbolic Representation), que corresponde a uma nova abordagem para problemas envolvendo classificação de atividades humanas. O método HAR-SR realiza extração automática de características no domínio discreto utilizando quantificadores estatísticos como novas características que representam atividades. Esses quantificadores associam valores às séries temporais conforme sua natureza determinística ou estocástica. Além disso, o HAR-SR utiliza estratégias de fusão de dados para combinar os sinais dos sensores e realiza uma redução de dimensionalidade nos dados. Os resultados desta pesquisa mostram que o HAR-SR apresenta um desempenho similar aos trabalhos estado-da-arte no reconhecimento de atividades. O diferencial do método proposto, além da boa capacidade de generalização, está relacionado ao custo computacional, que é menor no processo de extração de características, visto que utiliza um número muito menor de características para gerar o modelo de classificação. Os resultados de avaliação usando três bases de dados reais (SHOAIB, UCI, WISDM) em seis cenários mostram que é possível classificar atividades com 93% de precisão, e na média de todos os cenários, apresenta 81% de precisão utilizando a validação cruzada por indivíduo