O Teorema de Euler para Poliedros
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Ciências Exatas Brasil UFAM Programa de Pós-graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/4932 |
Resumo: | Neste trabalho fazemos um estudo de um dos mais belos teoremas da Geometria: o Teorema de Euler para Poliedros Convexos, que relaciona o número de vértices V , de arestas A e de faces F por meio da fórmula V −A+F = 2. O foco do trabalho é sua utilização como suporte ao professor do Ensino Médio. Para isto é apresentada um pouco da história do teorema e são dadas 3 demonstrações com abordagens distintas. Além disso, é feita uma breve análise de como está sendo feito o ensino de Geometria Espacial, particularmente o Teorema de Euler, no Ensino Médio. Por fim, faz-se uma sugestão para utilização de recursos computacionais para o ensino do Teorema de Euler através do software Uma Pletora de Poliedros, software aberto da Universidade Federal Fluminense (UFF). |