Purificação parcial de colinesterase de prochilodus brevis para emprego biotecnológico

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Leoncini, Giovanni Ortiz
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Alagoas
Brasil
Programa de Pós-Graduação em Química e Biotecnologia
UFAL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufal.br/handle/riufal/1451
Resumo: The cholinesterase (ChE) play an important role in the organophosphates and carbamates detection substances that are of high interest for environmental control, because these compounds are present in most pesticides applied to crops. The development of ChE biosensors to detect these contaminants with greater speed, sensitivity and selectivity, has the ability to quantify from a suitable transducer, the reduction of enzyme activity caused by contaminants. This study aimed to purify and characterize AChE of Prochilodus brevis brain for use in electrochemical tests. Gradients of pH, ionic strength and temperature, showed high activities in pH 8,5, 0,08M at ionic strength, 28Cº of temperature optimum and 37ºC of thermal stability for cell-free extract. Was applied salting out method in fractions 0-70% followed by 0-40% of (NH4)2SO4 as a refinement to liquid chromatography. The purification protocol 1 showed specific activity of 1.41 U/mg in 0-70% and 0-40% was 1.94 U/mg. The purification protocol 2, the 0-70% fraction had specific activity of 0.31 U/mg and 0-40% with 1.77 U/mg. After Sephacryl S-200 chromatography, showed specific activity for protocols 1 and 2 of 0,128U/mg and 0.2869 U/mg, respectively. The next stage of the Protocol 2 with DEAE-Sepharose was eluted peak with specific activity of 0.01326 U/mg. In the purification protocol 3, 0-70% have specific activity 0.310 U / mg, followed by 1,774 U/mg in 0-40%. After Sephacryl S-100, was obtain two peaks with a specific activity of 0.194 U/mg (ChE1) and 0.0873 U/mg (ChE2). SDS-PAGE of ChE 1 showed somewhat visible band of approximately 67kDa. Inhibition assays with ChE 1 had higher specificity for BW 284c51. Electrochemical tests with cell-free extract, dialyzed, ChE1 and ChE2, showed thiocholine (TCh) oxidation with better limits of detection and quantification limits for ChE1 and ChE2. The molecular modeling experiments showed favorable results in complex formation ChE-NTCPM. The study showed the isolation of ChE with catalytic activity for both enzymes, AChE and BuChE, with favorable adsorption properties in NTCPM in the development of enzymatic biosensor for environmental monitoring.