Adequação de edificações escolares ao contexto climático de Maceió AL, com vistas à otimização de seu desempenho térmico

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Costa, Ana Márcia Viana da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Alagoas
BR
Dinâmicas do Espaço Habitado
Programa de Pós-Graduação em Arquitetura e Urbanismo
UFAL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufal.br/handle/riufal/737
Resumo: School building design that uses as much as possible the principles of bioclimatic architecture can ensure appropriate thermal comfort of users of these spaces, the satisfactory development of school activities and energy efficiency of the built environment. During a building design process it is important to take into account the local climate, in order to achieve occupants comfort. In the context, of school buildings, frequently those constructions are made in disaccord with climate exposure that, consequently, may generate uncomfortable thermal environments that, if not resolved with, artificial climate control strategies, can generate negative overall performance of students and teachers in the teaching and learning process. On the other hand, when using those active indoor control strategies, , it is important to consider the building energy efficiency, natural climate control mechanisms as much as possible supplemented by artificial ones. Thus, the objective of this research is to discuss constructive guidelines for school projects in the city of Maceió-AL for satisfactory thermal performance purposes and consequently, appropriate thermal comfort to their occupants. As methodological procedures, school units in the city were initially chosen and analyzed, observing the constructive materials, surroundings features, siting and location, solar and wind orientation, plan solution, orientation and distribution of openings, in accord with bioclimatic design strategies for hot and humid climate. From these initial analyses, computational simulations were carried out in a design building model based on fixed design parameters (dimensions of classrooms, colors of facades, ceiling height, openings, number of students, architectural program requirements, and materials of the frames) and variables ones (school buildings plan types and the position of classrooms in relation to corridor, orientation of facades, walls and roofing materials). The results showed design alternatives based on the hot and humid climate of Maceió, which may assist future interventions and the design of new architectural projects, particularly school building design, enabling more thermally comfortable indoor environments.