Medida do coeficiente eletro-óptico efetivo e determinação do coeficiente de blindagem do campo elétrico aplicado em cristal fotorrefrativo Bi12TiO20 nominalmente puro utilizando uma configuração de incidência oblíqua: modelo e experimento
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Alagoas
Brasil Programa de Pós-Graduação em Física da Matéria Condensada UFAL |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.repositorio.ufal.br/handle/riufal/1688 |
Resumo: | The photorefractive crystals of the sillenite family are very interesting because their large potentiality of applications in devices development, such as non‐destructive interferometer tests. Among the crystals of this family, the Bi12TiO20 (BTO) is more attractive because their relatively fast response time and the lower optical activity, being promising for application in real time image processing. The effective electro‐optic coefficient ( reff ) is a parameter too important for application of the BTO. The wavelength dispersion of this coefficient in the visible spectrum has attracted some discussion in the literature. Another important parameter is the electric screening field coefficient (ξ ). This parameter is necessary to take into account the material response to the applied electric field. Because the material is photoconductor and due to nonuniform illumination, the material responds creating an electric field, called screening field ( E scr ), that is opposed to the applied ones. In this work, we present an alternative procedure to determine ef r and ξ by measuring the optical intensity variation induced by an applied electric field ( E App ), which is transmitted through an undoped photorefractive 12 20 Bi TiO (BTO) crystal in an oblique incidence setup. The transmitted intensity variation (TIV) was modeled taking into account the transmission coefficients for the polarization plane parallel and perpendicular to the incidence plane, as well as the birefringence induced by the E App, which changes the components of the polarization vector of the light beam. The measurements were performed with infrared radiation at 780 nm and provided 5.5 0.2 pm/V reff = ± . It allowed us to conclude, with support of results from the literature, that the region without dispersion of the electro‐optic coefficient in the BTO crystal ranges from 510 nm to at least 780 nm. The results point to the existence of an intensity threshold inside the crystal to create a significant E scr. The procedure proposed here can be used for distinct wavelengths and seems to be suitable for other electrically induced birefringent materials. |