Condensação de Bose-Einstein em cadeias com acoplamentos de longo-alcance

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Barros, Delvis Bertrand Jorge de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Alagoas
Brasil
Programa de Pós-Graduação em Física da Matéria Condensada
UFAL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufal.br/handle/riufal/1802
Resumo: In this work, we investigate the critical properties of the Bose-Einstein condensation transition in a model of non-interacting bosons whose one-particle hamiltonian in the tight-binding approximation includes long-range couplings in a linear chain with periodic boundary conditions. The couplings along the chain are described by a kinetic hopping term which is responsible by the quantum mobility of the particles and whose amplitude decays with the distance between the sites as a power-law with a characteristic exponent a. We show that the density of states in the vicinity of the lower band edge of the energy spectrum strongly depends on a. In the re- gime of 1 < α < 2, the density of states vanishes as a power-law, similar to the behavior found for bosons in hypercubic lattices with dimension d = 2/(α -1). We determine the critical properties of the Bose-Einstein condensation transition that takes place in this regime using a hypothesis of a single characteristic length scale and a finite-size scaling analysis. In the regime of 3/2 < α < 2, the critical exponents are quite similar to those that characterize the transition in the corresponding hypercubic lattice. On the other hand, in the regime of 1 < α < 3/2, the exponents obtained from the single length scale hypothesis are quite distinct form those on the hypercubic lattice. This result indicates that the single length scale hypothesis can not correctly capture the critical exponents in the regime where the effective dimensionality of the model is above the upper critical dimension above which the transition has a mean-field critical behavior.