Eletrodos quimicamente modificados a partir de nanotubos de carbono e nitroanilinas e sua aplicação na determinação de antioxidantes de importância biológica

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Pinho Júnior, Waldomiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Alagoas
Brasil
Programa de Pós-Graduação em Química e Biotecnologia
UFAL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufal.br/handle/riufal/1590
Resumo: This paper describes the development of simple and efficient electrochemical sensors, based on multi-walled carbon nanotubes (MWNCT) chemically modified with nitroanilines (NA), and electroreduced products. These sensors were developed for the simultaneous determination of uric acid (UA), ascorbic acid (AA) and dopamine (DO). NAs, on the MWCNT-modified glassy carbon, suffer reduction, where the nitro group is reduced irreversibly generating the redox couple hydroxylamine/nitroso, originating the chemically modified electrode (CME). The techniques employed for this work were cyclic voltammetry and chronoamperometry, which were used to study the electrochemical behavior of the modified electrode, for detection of analytes in biological samples, obtaining the kinetic parameters and analytical characterization of the platform. In order to assess the effect of the nitro group position in the series of nitroanilines, the isomers ortho-nitroaniline (oNA) and meta-nitroaniline (mNA) were evaluated for sensitivity and response toward AA and UA detection, following the same procedure applied for para-nitroaniline (pNA), which showed the highest current variation, indicating greater effectiveness. The chronoamperometric studies were used, in order to obtain more information about the redox process between AA and the functionalized platforms, since this proved to be a catalytic process. Thus, by means of graphs and Cottrell equation, it was possible to obtain values for the apparent diffusion coefficient (DAA) and the catalytic constant (kcat) for the reaction with AA. The values of kcat and DAA determined for AA were 3.83 x 10-6 cm-2 s-1 and 1.879 x 106 M-1 s-1, respectively. The amperometric sensor allowed the determination of AA, DO and UA. The following figures of merit were obtained: for AA: linear range 5 to 80 M and detection limit of 9.84 M; for DO, linear range of 5 to 80 M and detection limit of 2.13 M and, for UA, linear range of 5 to 80 M and detection limit of 2.30 M. From the obtained performance, the use of nanostructured platform composed of MWNCT and activated pNA is justified, mainly for the simultaneous determination of AA, DO and UA. The comparative study of the isomers showed that the pNA and mNA chemically modified sensors showed increased sensitivity toward the analytes AA and UA, compared to oNA. The study with diazonium salts showed that para-nitroaniline adheres to the surface of the electrode by grafting.