Previsão de inadimplência e redes neurais artificiais
Ano de defesa: | 2006 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Instituto Politécnico BR UERJ Programa de Pós-Graduação em Modelagem Computacional |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.bdtd.uerj.br/handle/1/13738 |
Resumo: | O objetivo deste trabalho é a previsão de inadimplência. Foram implementados dois modelos de previsão de inadimplência, de modo que o primeiro modelo fez uso de uma rede neural feedforward utilizando o algoritmo de retro propagação, e o segundo utilizou uma rede não supervisionada (rede Kohonen). As características relevantes de usuários de crédito foram apresentadas para as redes neurais, para o seu treinamento e teste. Os resultados obtidos demonstram que tanto as redes neurais supervisionadas quanto as redes neurais não supervisionadas mostraram-se instrumentos eficazes para o processo de previsão de inadimplência. |