Mapeamento de difusão no reconhecimento e reconstrução de sinais
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Instituto Politécnico BR UERJ Programa de Pós-Graduação em Modelagem Computacional |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.bdtd.uerj.br/handle/1/13671 |
Resumo: | Em muitas representações de objetos ou sistemas físicos se faz necessário a utilização de técnicas de redução de dimensionalidade que possibilitam a análise dos dados em baixas dimensões, capturando os parâmetros essenciais associados ao problema. No contexto de aprendizagem de máquina esta redução se destina primordialmente à clusterização, reconhecimento e reconstrução de sinais. Esta tese faz uma análise meticulosa destes tópicos e suas conexões que se encontram em verdadeira ebulição na literatura, sendo o mapeamento de difusão o foco principal deste trabalho. Tal método é construído a partir de um grafo onde os vértices são os sinais (dados do problema) e o peso das arestas é estabelecido a partir do núcleo gaussiano da equação do calor. Além disso, um processo de Markov é estabelecido o que permite a visualização do problema em diferentes escalas conforme variação de um determinado parâmetro t: Um outro parâmetro de escala, Є, para o núcleo gaussiano é avaliado com cuidado relacionando-o com a dinâmica de Markov de forma a poder aprender a variedade que eventualmente seja o suporte do dados. Nesta tese é proposto o reconhecimento de imagens digitais envolvendo transformações de rotação e variação de iluminação. Também o problema da reconstrução de sinais é atacado com a proposta de pré-imagem utilizando-se da otimização de uma função custo com um parâmetro regularizador, γ, que leva em conta também o conjunto de dados iniciais. |