Contribuições à teoria de controle adaptativo utilizando técnicas de inteligência computacional e funções de monitoração
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Faculdade de Engenharia BR UERJ Programa de Pós-Graduação em Engenharia Eletrônica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.bdtd.uerj.br/handle/1/11860 |
Resumo: | Este trabalho tem como principal objetivo investigar a aplicação de técnicas inteligentes em controladores adaptativos do tipo extremal e por modelo de referência, de forma a melhorar o desempenho de tais controladores. Essas técnicas foram aplicadas em três estudos de caso. No primeiro estudo de caso foi desenvolvida uma rede neural artificial (RNA) capaz de suprimir as oscilações de alta frequência existentes na saída de um controlador extremal. A supressão dessas oscilações é importante pois elas prejudicam o desempenho de controle em aplicações práticas. A rede neural artificial utilizada foi uma perceptron multicamadas com uma entrada e uma saída, com uma camada escondida. Para o seu treinamento foi utilizada uma pequena amostragem obtida da saída oscilatória do controle extremal. No segundo estudo de caso foram aplicados algoritmos genéticos (AG) na inicialização de controladores adaptativos por modelo de referência (MRAC) como forma de reduzir os conhecimentos prévios necessários para a implementação desse tipo de controlador no problema de rastreamento de trajetórias. Na primeira abordagem foram utilizados sistemas com uma entrada e uma saída onde o AG encontra os parâmetros para a inicialização do MRAC de forma que os transitórios são reduzidos de maneira significativa sem a necessidade de aumentar o sinal de controle. Na segunda abordagem, considera-se sistemas de múltiplas entradas e saídas onde o AG encontra os sinais de direção de controle da matriz de ganho de alta frequência, de forma que a estabilidade global do controlador MRAC e a convergência do erro de rastreamento para zero possam ser garantidas. Esse conhecimento prévio é fundamental para o funcionamento desse tipo de controlador em sistemas reais, onde dependendo da aplicação torna-se impossível de saber previamente. Os resultados do segundo estudo de caso foram comparados com um método de funções de monitoração também desenvolvido nesse trabalho, onde o AG se mostra ainda mais útil conforme o número de entradas e saídas do sistema aumenta. O terceiro estudo de caso aplica funções de monitoração em conjunto com controladores adaptativos binários do tipo BMRAC como forma de resolver o problema do desconhecimento dos sinais dos menores principais da matriz de ganho de alta frequência (HFG), responsável por definir a direção de controle. A grande vantagem desse método é ser aplicável em tempo real. O método proposto foi desenvolvido para sistemas de grau relativo um com múltiplas entradas e saídas (MIMO), pois esses tipos de sistemas apresentam desafios para controladores BMRAC até mesmo quando os sinais da matriz HFG são conhecidos, devido ao grande número de restrições necessárias e conhecimentos prévios. Todos os métodos aplicados apresentaram bons resultados, mostrando sua eficiência e servindo de base para novos estudos. |