Análise associativa: identificação de padrões de associação entre o perfil socioeconômico dos alunos do ensino básico e os resultados nas provas de matemática

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Aloquio, Lyvia
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Instituto Politécnico
BR
UERJ
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bdtd.uerj.br/handle/1/13791
Resumo: Nos dias atuais, a maioria das operações feitas por empresas e organizações é armazenada em bancos de dados que podem ser explorados por pesquisadores com o objetivo de se obter informações úteis para auxílio da tomada de decisão. Devido ao grande volume envolvido, a extração e análise dos dados não é uma tarefa simples. O processo geral de conversão de dados brutos em informações úteis chama-se Descoberta de Conhecimento em Bancos de Dados (KDD - Knowledge Discovery in Databases). Uma das etapas deste processo é a Mineração de Dados (Data Mining), que consiste na aplicação de algoritmos e técnicas estatísticas para explorar informações contidas implicitamente em grandes bancos de dados. Muitas áreas utilizam o processo KDD para facilitar o reconhecimento de padrões ou modelos em suas bases de informações. Este trabalho apresenta uma aplicação prática do processo KDD utilizando a base de dados de alunos do 9º ano do ensino básico do Estado do Rio de Janeiro, disponibilizada no site do INEP, com o objetivo de descobrir padrões interessantes entre o perfil socioeconômico do aluno e seu desempenho obtido em Matemática na Prova Brasil 2011. Neste trabalho, utilizando-se da ferramenta chamada Weka (Waikato Environment for Knowledge Analysis), foi aplicada a tarefa de mineração de dados conhecida como associação, onde se extraiu regras por intermédio do algoritmo Apriori. Neste estudo foi possível descobrir, por exemplo, que alunos que já foram reprovados uma vez tendem a tirar uma nota inferior na prova de matemática, assim como alunos que nunca foram reprovados tiveram um melhor desempenho. Outros fatores, como a sua pretensão futura, a escolaridade dos pais, a preferência de matemática, o grupo étnico o qual o aluno pertence, se o aluno lê sites frequentemente, também influenciam positivamente ou negativamente no aprendizado do discente. Também foi feita uma análise de acordo com a infraestrutura da escola onde o aluno estuda e com isso, pôde-se afirmar que os padrões descobertos ocorrem independentemente se estes alunos estudam em escolas que possuem infraestrutura boa ou ruim. Os resultados obtidos podem ser utilizados para traçar perfis de estudantes que tem um melhor ou um pior desempenho em matemática e para a elaboração de políticas públicas na área de educação, voltadas ao ensino fundamental.