Previsão da Inflação utilizando modelos de Vetores Autorregressivos e Combinação de previsões pela Otimização MINIMAX: Evidências no Brasil
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade do Estado do Rio de Janeiro
Centro de Ciências Sociais::Faculdade de Ciências Econômicas BR UERJ Programa de Pós-Graduação em Ciências Econômicas |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.bdtd.uerj.br/handle/1/7569 |
Resumo: | Esta dissertação tem como propósito apresentar contribuições que viabilizem melhorias na capacidade de previsão dos modelos de Vetores Autorregressivos (VAR) por ser um método de resultados avaliados como acurados no curto e no médio prazo e de baixa complexidade (Lima; Araújo; Silva, 2009).Mais especificamente, realizamos a previsão do índice de preços ao consumidor amplo (IPCA)através da estimação de modelos VAR utilizando-se de combinações lineares de programação matemática (PPM) multiobjetivo MINIMAX que permitissem aos modelos VAR atingirem maior acurácia. Os resultados deste trabalho nos apontam que, em média, pelo método estático, as previsões combinadas de inflação calculadas pela combinação de previsões que minimizam o erro quadrático médio (MSE) e as 3 estatísticas (MAPE, MAE e MSE) superam um modelo Naïve usado como referência (benchmark) e o modelo VAR de previsão individual com maior acurácia. Isso é observado principalmente para previsões com 6 e 12 passos à frente. Pelo método dinâmico, no horizonte de 12 meses as previsões foram mais acuradas que àqueles do modelo referência. |