Proposição e avaliação de indicadores de desempenho para algoritmos de restauração de imagens
Ano de defesa: | 2006 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Instituto Politécnico BR UERJ Programa de Pós-Graduação em Modelagem Computacional |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.bdtd.uerj.br/handle/1/13740 |
Resumo: | Uma área de intensa atividade de pesquisa em nanotecnologia está relacionada à restauração de imagens obtidas através dos microscópios de força atômica (AFM). Durante o processo de aquisição as imagens de AFM estão sujeitas às limitações impostas pela instrumentação utilizada e costumam apresentar pobres relações sinal/ruído, bem como a manifestação dos efeitos degenerativos relacionados à interação entre o tip e a amostra. Buscando tratar imagens obtidas de estruturas biológicas, tem sido propostos e testados diversos algoritmos de restauração, e nesta dissertação é utilizado um método baseado na Regularização de Tikhonov. Ao longo do desenvolvimento de diversos algoritmos de restauração foi observado que os indicadores matemáticos usuais para avaliação de desempenho não correspondiam à percepção visual relativa às imagens restauradas. Este trabalho propõe e avalia diferentes indicadores de desempenho para algoritmos de restauração utilizados no pós processamento de imagens obtidas em escala nanométrica por microscopia de força atômica e imagens artificiais criadas especialmente para testar o indicador de desempenho utilizado. São investigados indicadores usuais empregados em restauração de imagens, sendo também proposta a implementação de indicadores baseado nas distâncias de Bregman. O trabalho foi dividido em duas partes. Primeiramente foi gerado e restaurado um conjunto de imagens utilizando o funcional de regularização de Tikhonov, sendo distribuídas entre 50 pessoas que foram chamadas de avaliadores humanos. A tarefa consistia em avaliar as imagens, procurando identificar o quanto as imagens restauradas se aproximavam das imagens originais, no que se relaciona à visão humana. A segunda parte consistiu na implementação de uma rotina computacional para o cálculo de vários indicadores matemáticos. Posteriormente foi realizada a comparação dos resultados obtidos através dos indicadores matemáticos com a percepção visual dos avaliadores humanos, sendo esta última essencialmente qualitativa, sendo então transformada em uma escala numérica para permitir então a comparação com os indicadores matemáticos. Observou-se que dependendo dos parâmetros utilizados no algoritmo de restauração baseado no funcional de regularização de Tikhonov e dos tipos de imagens restauradas, os indicadores baseados nas Distâncias de Bregman apresentam melhores resultados do que aqueles obtidos com indicadores tradicionais, como por exemplo o erro médio quadrático (MSE Mean Square Error), levando a uma concordância maior destes resultados quando comparados com a avaliação feita pelos avaliadores humanos. |