Redes neurais convolucionais aplicadas em monitoramento de estruturas metálicas

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Almeida, Julio Henrique Lopes de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Faculdade de Engenharia
BR
UERJ
Programa de Pós-Graduação em Engenharia Eletrônica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bdtd.uerj.br/handle/1/11863
Resumo: Este trabalho apresenta um sistema inteligente de monitoramento estrutural de peças metálicas. Ele consiste de duas etapas: a primeira realiza-se um ensaio não destrutivo utilizando-se impedância eletromecânica e a segunda, a curva de impedância é classificada por um algoritmo de aprendizagem profunda, Redes Neurais Convolucionais, as quais foram executadas utilizando duas formas diferentes de tratamento do vetor de entrada, que são: mantê-lo unidimensional e convertê-lo em uma matriz bidimensional quadrada. O ensaio de impedância eletromecânica foi realizado através da fixação de um transdutor PZT em chapas de aço carbono 1020, que simulam a palheta da turbina, e diferentemente dos trabalhos relacionados, a fixação foi feita de modo não permanente utilizando um suporte com molas, ao invés do método comum, que consiste na fixação permanente do sensor, através da colagem com um adesivo de alta resistência. O objetivo deste trabalho é identificar a condição mecânica das palhetas de aço a partir das curvas de impedância elétrica extraídas do transdutor PZT. As Redes Neurais Convolucionais foram comparadas com os classificadores k-vizinhos mais próximos, máquina de vetores de suporte, regressão logística e apresentaram resultados competitivos.