Sistemas complexos, séries temporais e previsibilidade
Ano de defesa: | 2011 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Instituto de Física Armando Dias Tavares BR UERJ Programa de Pós-Graduação em Física |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.bdtd.uerj.br/handle/1/12891 |
Resumo: | Para qualquer sistema observado, físico ou qualquer outro, geralmente se deseja fazer predições para sua evolução futura. Algumas vezes, muito pouco é conhecido sobre o sistema. Se uma série temporal é a única fonte de informação no sistema, predições de valores futuros da série requer uma modelagem da lei da dinâmica do sistema, talvez não linear. Um interesse em particular são as capacidades de previsão do modelo global para análises de séries temporais. Isso pode ser um procedimento muito complexo e computacionalmente muito alto. Nesta dissertação, nos concetraremos em um determinado caso: Em algumas situações, a única informação que se tem sobre o sistema é uma série sequencial de dados (ou série temporal). Supondo que, por detrás de tais dados, exista uma dinâmica de baixa dimensionalidade, existem técnicas para a reconstrução desta dinâmica.O que se busca é desenvolver novas técnicas para poder melhorar o poder de previsão das técnicas já existentes, através da programação computacional em Maple e C/C++. |