CALAGEM E GESSAGEM COMO ESTRATÉGIAS PARA AUMENTO DO SEQUESTRO DE CARBONO EM PLANTIO DIRETO

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Inagaki, Thiago Massao lattes
Orientador(a): Sá, João Carlos de Moraes lattes
Banca de defesa: Santos, Julio Cezar Franchini dos lattes, Fonseca, Adriel Ferreira da lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE ESTADUAL DE PONTA GROSSA
Programa de Pós-Graduação: Programa de Pós-Graduação em Agronomia
Departamento: Agricultura
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/2279
Resumo: Although recognized, the effects of lime and gypsum applications over soil organic matter dynamics is still scarcely studied. This research was developed based in the hypothesis the lime and gypsum applications create a favorable environment for biological activity, leading to increase of carbon sequestration and crop productivity. In this way, the objectives of this study were: a) to evaluate the impact of lime and gypsum applications in the soil biological quality, soil organic carbon (SOC) stocks and crop productivity in a long-term no-till system; and b) to evaluate through a laboratory incubation experiment the effects of lime and gypsum in the SOC stocks, Ca and Mg content and soil basal respiration. The field experiment was stablished in 1998 on clay Oxisol (Typic Hapludox), in Ponta Grossa – PR Brazil in a split-plot completely randomized block design. The main plots were comprised in three liming treatments: a) Control, with no lime applications, b) Incorporated lime (IL) at the rate of 4,5 Mg ha-1 and c) Surface-applied lime (SL) at the rate of 4.5 Mg ha-1 divided in three annual applications of 1,5 Mg ha-1 from the experiment establishment. The subplots were comprised by gypsum applied on soil surface at four rates: 0, 3, 6 and 9 Mg ha-1. The soil samples were collected in 2013, fifteen years after the experiment establishment. A laboratory incubation experiment was also carried out to evaluate the effects of both practices. We collected undisturbed samples in 5x5 cm steel rings, which were maintained under 28ºC in 50% of water maximum retention. The experiment design was completely randomized plots with 2x4 factorial design. The treatments assessed were: a) application or not of 4.5 Mg ha-1 of lime; and b) gypsum rates of 0, 3, 6, and 9 Mg ha-1. Over the ring surface, we added corn and soybean residues in order to simulate no-till conditions. In the field experiment, liming provided increase of soil biological activity, SOC stocks, crop productivity, biomass-C input and soil fertility. The C-biomass input and Ca content contributed significantly for increases in SOC stocks. The soil biological activity (measured by enzyme activities) was positively influenced mainly by the labile SOC fractions. Gypsum application positively contributed to increases in SOC labile fractions and arylsulfatase activity. In the incubation experiment, the lime application significantly increased the soil basal respiration, labile SOC stocks and Ca and Mg contents. The gypsum applications significantly increased the labile SOC stocks and Ca content. We observed significant contributions of soil basal respiration and Ca content in the SOC stocks increase. We conclude the lime and gypsum consist in important strategies to promote increases in SOC stocks, governed mainly by the role of Ca as a SOC biding agent and the C-biomass input; and that the use of undisturbed samples were an efficient strategy to assess the effects of lime and gypsum in no-till system.