EFEITO DA DOLOMITA E DA CASEÍNA FOSFOPEPTÍDEA FOSFATO DE CÁLCIO AMORFO NAS PROPRIEDADES QUÍMICO-MECÂNICAS DA DENTINA DECÍDUA DESMINERALIZADA

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Dias, Gisele Fernandes lattes
Orientador(a): Santos, Fábio André dos lattes
Banca de defesa: Ferraz, Thais Regina Kummer lattes, Losso, Estela Maris lattes, Arrais, Cesar Augusto Galvão, Queiroz, Vania Aparecida Oliveira
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE ESTADUAL DE PONTA GROSSA
Programa de Pós-Graduação: Programa de Pós-Graduação em Odontologia
Departamento: Clinica Integrada, Dentística Restauradora e Periodontia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/1720
Resumo: The aim of the study was to evaluate the effect of dolomite (DMT) and casein fosfopeptídea amorphous calcium phosphate (CPP-ACP) in chemical and mechanical properties of emineralized dentin deciduous. For the experiment 1:analyzed the toxicity, chemical properties and release of calcium (Ca) and magnesium (Mg) ions with bioassay Artemia Salina, hydrogen potential (pH), diffraction (XRD) and X-ray fluorescence (XRF) of 4 samples of DMT and calcium hydroxide PA (Ca(OH)2). For the experiments 2 and 3 in vitro evaluated in sound and demineralized dentin the action potential of remineralization of DMT powder and in CPP-ACP sealed with glass ionomer cement (GIC) of high viscosity. In 80 primary molars were performed cavities class I. The teeth were divided into groups 1 and 2 /(pH cycling) and DMT; CPP-ACP. After pH cycling (n = 40) the cavity half was insulated with enamel, obtaining two places a direct contact with the GIC and other control. 4 groups were formed according to the material used and dentin condition.The restored teeth were sliced (slices of n = 3) in the mesial-distal direction. The hardness data were analyzed considering the contact areas (C) and no contact (NC),with ANOVA 2 Bonferroni post-test criteria for dentine factors (sound and demineralized), treatment (with and without treatment) and interaction (treating and dentin). The level of significance used was 5% (α = 0.05). Data from energy dispersive spectroscopy (EDS), electron microscope high resolution scan (FEG) and Micro Raman were analyzed by groups. Results Experiment 1 : XRD and XRF detected the presence of elements in addition to pure DMT and Ca(OH)2 to expectations of approximately 100% portlandite. The toxicity test resulted in non-toxic amounts of DMTs. The test pH DMTs in the framed pattern alkalinity. There was a significant release of Ca and Mg ions. Results Experiment 2: area NC significant difference was found for the dentin factor (p = 0.0001). The interaction dentin and treatment was not significant (p = 0.238). Area C: there was no significant difference in relation to dentin (p = 0.391). However, the direct contact area of GIC/DMT was no significant difference in the interaction dentin and treatment (p = 0.001). Results Experiment 3: hardness values increased in area C for all groups (p <0.001); no significant change in hardness values after the application of CPP-ACP (p> 0.05). In the evaluation of the FEG and EDS, the direct contact of demineralized dentin/CPPACP/ GIC resulted in increased peak phosphorus (P) ion. Changes in hardness occurred by direct contact of the material with the dentin surface (dentin and treatment). The demineralized dentin was the most reactive substrate in experiments 2 and 3. The experiment1: we conclude that the DMT is non-toxic, alkaline pH and releases Ca ions. Experiment 2: Isolated DMT determined improvement of demineralized dentin with effect on chemical and mechanical properties of demineralized dentin. Experiment 3: CPP-ACP associated with GIC promoted the increase of P ion. The ionic exchange between GIC, CPP-ACP and demineralized dentin induced changes in the chemical properties of the dentin.