Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Stachak, Alessandro
 |
Orientador(a): |
Caires, Eduardo Fávero
 |
Banca de defesa: |
Rocha, José Carlos Ferreira da,
Kapp Junior, Claudio,
Joris, Helio Antonio Wood,
Campos Junior, Arion de |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual de Ponta Grossa
|
Programa de Pós-Graduação: |
Programa de Pós Graduação Computação Aplicada
|
Departamento: |
Departamento de Informática
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.uepg.br/jspui/handle/prefix/2494
|
Resumo: |
Estimar a produtividade de biomassa na agricultura é uma ferramenta chave no manejo da lavoura, gerando informações que podem auxiliar a complexa tomada de decisões no campo. O nitrogênio (N), por ser é um nutriente que participa da estrutura e de funções celulares vitais à planta, apresenta estreita correlação com a produtividade de biomassa, principalmente na cultura do trigo (Triticum aestivum L.). Uma técnica muito utilizada na estimativa de biomassa e estado nutricional de N é o sensoriamento remoto (SR), que consiste na aquisição de informações de um objeto sem existir contato entre o sensor e o alvo. No SR existem três plataformas de obtenção de dados, sendo elas: orbital, por meio de satélites; aéreo, com aviões, helicópteros e aeronaves remotamente pilotadas (RPA); e terrestre, com sensores óticos e espectroradiômetros. Na criação de modelos de estimativa de produtividade de biomassa e de teor foliar de N, as três plataformas do SR são empregadas, já existindo produtos comerciais para tais finalidades. Entretanto, existe carência de informações a respeito da eficiência das tais plataformas em um mesmo estudo de campo. Tradicionalmente, os modelos preditivos com dados de SR na agricultura são gerados por técnicas clássicas de estatística, como a regressão linear. No entanto, técnicas da mineração de dados (MD) podem obter resultados mais relevantes. Dentre as técnicas da MD promissoras, a máquina de vetores de suporte para regressão (SVR), devido a sua grande capacidade de generalização e criação de modelos lineares e não lineares, tem sido empregada em dados de SR. Os objetivos deste trabalho foram:(i) avaliar a correlação entre os dados obtidos a partir das três plataformas do SR na estimativa da produtividade de biomassa seca da parte aérea e da concentração de N nas folhas de trigo, e (ii) comparar os resultados obtidos com a técnica clássica de regressão linear em relação aqueles gerados pela SVR. Para isso, plantas de trigo, cultivar TBIO Sinuelo, foram cultivadas em diferentes ambientes envolvendo manejos distintos de adubação nitrogenada. A avaliação da capacidade dos sensores foi abordada de duas formas: (i) com amostras aleatórias em diferentes estádios de desenvolvimento da cultura do trigo dentro de cada tratamento de adubação nitrogenada, verificando a capacidade do sensor em detectar a variabilidade em áreas com um mesmo tratamento, e (ii) com as médias das amostras em cada tratamento, avaliando a capacidade do sensor em detectar as diferenças provocadas por manejos variados de adubação nitrogenada. Os resultados obtidos demonstraram existência de correlação dos dados gerados pelos equipamentos utilizados (sensor terrestre GREENSEEKER, satélites RAPIDEYE e RPA EBEE) com a produtividade de biomassa seca da parte aérea e a concentração de N nas folhas de trigo. A SVR gerou coeficientes de correlação (r) mais expressivos do que a regressão linear sobre os dados obtidos com todos os equipamentos utilizados. Dentre as plataformas, considerando a abordagem com as amostras aleatórias no campo, os dados gerados com a RPA EBEE apresentaram correlação mais estreita com a estimativa de biomassa da parte aérea e a concentração foliar de N. Já, quando se consideraram as médias dos tratamentos de adubação nitrogenada, tanto a RPA EBEE como os satélites RAPIDEYE apresentaram resultados similares na estimativa de produtividade de biomassa da parte aérea. Porém, para a predição do teor foliar de N, a RPA EBEE proporcionou resultados superiores em relação aos obtidos com os satélites RAPIDEYE. Concluiu-se que a plataforma RPA EBEE foi mais eficiente do que as plataformas terrestre (GREENSEEKER) e orbital (satélites RAPIDEYE) para estimar a produtividade de biomassa da parte aérea e a concentração de N nas folhas de trigo, quando existe maior variabilidade na área de estudo, e que a SVR foi uma técnica mais eficiente do que a regressão linear para análise dos dados das três plataformas: orbital, aérea e terrestre. |