TENACIFICAÇÃO DE LAMINADOS CERÂMICOS: MULITA E MONOPOROSA

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Ciesielski, Juliano Swiech lattes
Orientador(a): Pianaro, Sidnei Antonio lattes
Banca de defesa: Pukasiewicz, Anderson Geraldo Marenda lattes, Tebcherani, Sérgio Mazurek lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE ESTADUAL DE PONTA GROSSA
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia e Ciências de Materiais
Departamento: Desenvolvimento e Caracterização de Materiais
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/1429
Resumo: Many of the compounds multilayers are manufactured from advanced ceramic compositions, which seeks higher mechanical performance, the manufacture of these compositions based materials, ceramic structural has been little studied. Aiming to increase the fracture energy in ceramics traditional was investigated in this study the mechanical behavior of a multilayer system formed by stacking mullite and monoporosa. The mullite is an important raw material used in the manufacture of refractory ceramic for structural, because the physical and mechanical properties at high temperatures as high melting point, low expansion, fracture toughness and thermal shock that, high resistance fluency and low dielectric constant. The monoporosa has a high resistance which gives excellent mechanical and chemical properties and is widely used as coating mass on floors and re-investments outer. The increase in fracture energy was determined by comparing the curves of three point bending of the multilayer system with its monolithic references. The fractures were characterized by optical microscopy and MEV for microstructure analysis was carried out X-ray diffraction. Samples developed were evaluated multilayer reference to the materials employed in the formation of each layer in relation to these reference strains were obtained averages to 2.58 times larger and fracture energies of up to 7 times larger.