INFLUÊNCIA DA INCORPORAÇÃO DE UM PLASTIFICANTE E UM POLIETILENO DE ALTO PESO MOLECULAR NAS PROPRIEDADES DE UMA RESINA EXPERIMENTAL E DIMINUIÇÃO DO ESTRESSE DE CONTRAÇÃO

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Dominguez, John Alexis lattes
Orientador(a): Gomes, Osnara Maria Mongruel lattes
Banca de defesa: Franco, Ana Paula Gebert lattes, Pupo, Yasmine Mendes lattes, Carvalho, Benjamim de Melo lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE ESTADUAL DE PONTA GROSSA
Programa de Pós-Graduação: Programa de Pós-Graduação em Odontologia
Departamento: Clinica Integrada, Dentística Restauradora e Periodontia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/1722
Resumo: The objectives of this study were: 1) to evaluate the degree of conversion, shrinkage stress, flexural and compressive strength of an experimental resin with a lactic polyacid and castor oil; 2) to evaluate the cytotoxicity of an experimental resin with a lactic polyacid, and castor oil; 3) evaluate, degree of conversion, shrinkage stress, flexural and compressive strength an experimental resin with addition of a high molecular weight polyethylene; 4) to assess the cytotoxicity of an experimental resin with addition of a high molecular weight polyethylene. Initially, it was synthesized a poly (lactic acid) (PLA) via a polycondensation process. After 24 hours, the castor oil (OR) was incorporated by an esterification process with N, N-Dicyclonecylcarbodimide and 99% 4-Dimethylamino-Pyridine in 40 mL of tetrahydrofuran. After this, the blend was characterized by X-ray diffraction (XRPD), Raman spectroscopy, scanning electron microscopy (SEM) and shrinkage stress, where was proven the incorporation of PLA + OR in the experimental composite resin. In the third chapter, PLA + OR were manipulated in two concentrations (1.5% and 3%) in an experimental composite: (2,2 bis [4- (2-hydroxy-3-metacrilatoxypropoxy) phenol] (BisGMA) Triethylene glycol dimethacrylate (TEGDMA), camphorquinone (CQ), N, N-dimethylaminoethyl methacrylate (DEMA-EMA), butylated hydroxytoluene (BHT), silanated barium borosilicate glass, and the tests of degree of conversion, compressive and flexural strength and shrinkage stress were made. The cytotoxicity assay was done; a suspension of 3 x 103 cells/mL of culture medium was prepared. For this, the cells were detached from the bottom of the bottle by the addition of trypsin with EDTA, after incubation in 5% CO2 with 3 mL Eagle's medium supplemented culture. After 24 h incubation period, the culture medium was removed and 200 uL of a solution of culture medium and methylltetrazolium salt (MTT). Subsequently, the analysis of mitochondrial activity was performed in a spectrophotometer (Biotek EL 800, Biotek, Winooski, VT, USA) with a 10 wavelength of 570 nm. The data from each test were analyzed by one-way ANOVA. No significant differences were found (p <0.005) in compressive and degree of conversion tests, and significant differences in shrinkage stress where obtained, up to 69% decrease. and flexion, statistically significant . In the fourth chapter, it was incorporated a high molecular weight polyethylene and polypropiylene, in the experimental resin proposed in chapter two, at two concentrations (1.5% and 3%), and tested by degree of conversion, compressive and flexural strength and shrinkage stress. The data from each test were analyzed by one way ANOVA, finding no significant difference (p> 0.005) in degree of conversion, compressive and flexural strength, and the contraction stress showed a significant reduction of up to 40%. Conclusion: PLA + castor oil and the high molecular weight polyethylene decreases the shrinkage stress and properties like flexural and compressive strength and degree of conversion were not influenced.