AVALIAÇÃO DE MÉTODOS DE MOSAICO DE IMAGENS APLICADOS EM IMAGENS AGRÍCOLAS OBTIDAS POR MEIO DE RPA

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Almeida, Pedro Henrique Soares de lattes
Orientador(a): Senger, Luciano José lattes
Banca de defesa: Guimarães, Alaine Margarete, Morais, Erikson Freitas de
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Ponta Grossa
Programa de Pós-Graduação: Programa de Pós Graduação Computação Aplicada
Departamento: Departamento de Informática
País: Brasil
Palavras-chave em Português:
RPA
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/2543
Resumo: O mosaico de imagens é o alinhamento de múltiplas imagens em composições maiores que representam partes de uma cena 3D. Diversos algoritmos de mosaico de imagens foram propostos nas últimas duas décadas. Ao mesmo tempo, o advento contínuo de novos métodos de mosaico torna muito difícil escolher um algoritmo apropriado para uma finalidade específica. Este trabalho teve por objetivo avaliar métodos de mosaico baseados em característica de baixo nível utilizando imagens agrícolas obtidas por meio de Aeronave Remotamente Pilotada (RPA). Algoritmos detectores de característica de baixo nível podem ser invariantes à escala e rotação, dentre outras transformações que comumente ocorrem em imagens agrícolas obtidas por meio de RPA. O detector de cantos de Harris, detector de cantos FAST, detector de característica SIFT e detector SURF foram avaliados de acordo com o desempenho computacional e a qualidade do mosaico gerado. Para avaliar o desempenho, foram levados em consideração fatores como a média de características detectadas por imagem, o número de imagens utilizadas para compor o mosaico e o tempo de processamento (tempo de usuário ou user time). Para avaliar a qualidade, os mosaicos gerados pelos métodos foram utilizados para estimar a severidade da ferrugem asiática da soja e uma comparação com o software comercial Pix4Dmapper foi realizada. Em relação à qualidade, não houve diferença significativa e todos os métodos demonstraram estar no mesmo patamar. O detector SURF, dentre todos os métodos, obteve o pior desempenho utilizando, em média, apenas 33,1% das imagens de entrada para compor os mosaicos. O detector de cantos de Harris mostrou-se como a solução mais rápida, chegando a ser 7,27% mais rápido para compor o mosaico. Porém, em seu último mosaico gerado, o aproveitamento das imagens de entrada foi pobre: apenas 52%. O detector de cantos FAST obteve o melhor aproveitamento das imagens de entrada, porém, descontinuidades significativas de objetos ocorreram em seu último mosaico gerado. Além disso, obteve um tempo de processamento consideravelmente superior ao dos demais métodos, chegando a ser 6,42 vezes mais lento para compor o mosaico. O detector de característica SIFT obteve o segundo melhor tempo de processamento e o segundo melhor aproveitamento das imagens de entrada, sem apresentar problemas de descontinuidades de objetos. Portanto, mostrou-se como o método mais adequado para imagens agrícolas obtidas por meio de RPA.