Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Ferreira, Pablo Henrique
 |
Orientador(a): |
Guimarães, Alaine Margarete
 |
Banca de defesa: |
Rautenberg, Sandro |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual de Ponta Grossa
|
Programa de Pós-Graduação: |
Programa de Pós Graduação Computação Aplicada
|
Departamento: |
Departamento de Informática
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.uepg.br/jspui/handle/prefix/2409
|
Resumo: |
A alta dimensionalidade em bases de dados é um problema que pode estar presente em diversos segmentos, inclusive nas análises do estado de nutrientes em plantas. Atualmente essas análises são baseadas em metodologias que demandam tempo e reagentes. A espectroscopia do infravermelho próximo (NIR – NearInfrared) e médio (MIR – MiddleInfrared) têm se mostrado uma alternativa mais rápida e limpa em relação a quantificação simultânea de compostos. Os dados obtidos por esses equipamentos apresentam alta dimensão. A leitura ocorre em comprimentos de onda gerando centenas atributos para o NIR e milhares para o MIR. Uma das dificuldades está em identificar quais atributos são mais relevantes para análise dos nutrientes. Este trabalho teve como objetivo verificar o ganho de correlação obtido com o emprego de redução de dimensionalidade em dados obtidos por espectroscopia NIR e MIR, para estimativa de teores de 11 nutrientes em grãos e folhas de soja, sendo eles: Nitrogênio (N), Fósforo (P), Potássio (K), Cálcio (Ca), Magnésio (Mg), Enxofre (S), Cobre (Cu), Manganês (Mn), Ferro (Fe), Zinco (Zn) e Boro (B). Para isto, 231 amostras de folhas de soja e 285 de grãos de soja foram utilizadas para geração de modelos de regressão, sendo os espectros obtidos através dos espectrofotômetros NIR e MIR. Os modelos de regressão foram gerados pelos algoritmos de aprendizado de máquina SMOReg que implementa a máquina de vetor de suporte para regressão, o algoritmo baseado em árvores de decisão com funções de regressão M5Rules e o algoritmo LinearRegression. Os resultados foram avaliados através do coeficiente de correlação (r) e o erro quadrático (RRSE). A estimativa de nutrientes para folhas foi satisfatória tanto para espectroscopia NIR e MIR, onde correlações acima de 0,80 foram obtidas para os nutrientes P, K, Mg, S, Mn, Cu, Fe e Zn. Não houve correlações para B e Ca em folhas de soja. A estimativa de teores de nutrientes foi também satisfatória para grãos de soja, mas apenas em dados de espectroscopia NIR, onde correlações acima de 0,7 foram obtidas para N, P, K, Ca e S. O uso da redução de dimensionalidade proporcionou os altos valores para correlação de P, K e S em folhas de soja, fazendo uso do algoritmo LinearRegression. Para os grãos de soja, a redução de dimensionalidade foi imprescindível na obtenção de correlações satisfatórias, exceto para N, sempre utilizando o algoritmo LinearRegression. Quando a redução da dimensionalidade não foi usada, os resultados satisfatórios foram obtidos pelo algoritmo SMOREg a partir de dados foliares para os nutrientes N, Mg, Cu, Mn, Fe e Zn. A utilização da redução de dimensionalidade junto ao algoritmo LinearRegression auxiliou na obtenção de melhores correlações para três nutrientes em folhas e para os índices satisfatórios de grãos. Os resultados observados demonstram uma maior eficiência no uso do NIR para análises foliares do que para análises de grãos. As técnicas computacionais SMOReg e LinearRegression obtiveram os melhores resultados, sendo a SMOReg indicada para grandes quantidades de atributos e LinearRegression para quantidades menores de atributos. |