ESTUDO DE PROPRIEDADES ELÉTRICAS DO SISTEMA SUPERCONDUTOR YBa2Cu2,985Fe0,015O7

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Hneda, Marlon Luiz lattes
Orientador(a): Costa, Rosângela Menegotto da lattes
Banca de defesa: Novatski, Andressa lattes, Vieira, Valdemar das Neves lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE ESTADUAL DE PONTA GROSSA
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciências
Departamento: Fisica
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/897
Resumo: In this work we report an experimental study about the effects of Fe doping, the variation of the current density and the application of low magnetic fields on the resistive transition and normal phase of the polycrystal ine and monocrystalline Ba2Cu2:985Fe0:015O7 samples. Three polycrystalline samples were produced, one without oxygenation and two that were oxygenated during 24 and 48 hours. Was produced, also, one well oxygenated monocrystalline sample. In the polycrystalline samples and in the single crystal sample were applied electrical currents of 5, 10 and 15 mA. The X-ray diffraction, with Rietveld refinement, shows a decrease in the lattice parameters when related with Y Ba2Cu3O7. Raman spectroscopy measurements of the polycrystalline samples reveal the displacement of bands at 150 and 500 cm1 when related with Ba2Cu3O7. The obtained results for the polycrystalline samples indicate that, in a general manner, the Fe addition and the oxygenation degree strongly affect the electronic transport properties in the normal state and in the resistive transition. Were not observed effects of the current intensity in the normal phase. In the resistive transition the current has moderate effects, similar to those produced by the application of low magnetic fields. Using the temperature derivative of the resistivity and the logarithmic derivative of the conductivity plotted as a function of the temperature, it is shown that the resistive transition is a two-step process, typical of disordered systems. In the normal phase Gaussian and critical fluctuations were observed. There were no effects of doping, oxynenation or electrical current on the paraconductivity. The paracoherent phase is strongly affected by the degree of oxygenation, but no effects were observed by the Fe doping. The effect of the electrical current was more intense in the poorly oxygenated sample. At temperatures close to the state of zero resistance it was observed, for the sample without oxygenation, a critical regime whose exponent is current dependent. For the samples oxygenated during 24 and 48 hours, the exponent was independent of the degree of oxygenation, doping with Fe, and the current intensity. The obtained values for the exponent suggest that the universality class for the coherence transition is that of the 3D-XY model where the non-trivial disorder is relevant. In the single crystal sample, were applied low magnetic fields between 0 and 500 Oe. The results showed that the Fe doping affects the electronic transport properties of both normal phase and resistive transition. There were no effects of the fields or the currents in the normal phase. The derivative of the resistiviry shows a structure of multiple peaks, suggesting the existence of a distribution of critical temperatures which can be connected with a multiple and subtle phase separation related to the presence of regions of the sample with different concentrations of Fe and/or O. In the study of the fluctuations for T TC it was observed the super-critical regime. The regime was not affected by the current intensity variation or magnetic field application. Resistivity measurements of greater accuracy, made by applying magnetic fields, also revealed the genuinely critical regime, that proved to be stable under the applied fields.