Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Santos, Fábio dos
 |
Orientador(a): |
Rocha, José Carlos Ferreira da
 |
Banca de defesa: |
Borges, André Pinz,
Galvão, Carolina Weigert |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual de Ponta Grossa
|
Programa de Pós-Graduação: |
Programa de Pós Graduação Computação Aplicada
|
Departamento: |
Departamento de Informática
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.uepg.br/jspui/handle/prefix/2665
|
Resumo: |
O processo de identificação de bactérias relacionadas ao crescimento vegetal,é alvo de diversos estudos na área de bioinformática. Uma das formas para realizar esta identificação é utilizar dados de espectrometria de massa do tipo MALDI-TOF para detectar a presença de proteínas ribossomaisemumaamostra,eentão,usarclassificadoresparaprocessarestesdadoseselecionar o rótulo com a maior probabilidade. Durante o processo de geração dos espectros de massa paraclassificaçãoécomumanãodetecçãodealgumdospicosrelacionadosaproteínasribossomais. Considerando isto, este trabalho apresenta um estudo sobre o uso do algoritmo kNN para imputação desses casos. O estudo foi desenvolvido com o uso de classificadores logísticos para identificação de bactérias da espécie Staphylococcus aureus e do gênero Bacillus. Durante os experimentos foram testados três técnicas para imputar dados: imputação com zero, imputação com a média do atributo faltante, e a imputação com kNN. Desta última foram usadas duas abordagens: função de agregação de média e função de agregação de mediana. O protocolo experimental implementado possibilitou avaliar a influência da imputação sobre os resultados de classificação sob diferentes cenários no que se refere ao número de variáveis faltantes. Os resultadosobtidosmostramqueoempregodokNNnãolevouàumareduçãododesempenhodos classificadores, em relação àquele observado quando do uso de dados completos. Além disto, a classificação de dados submetidos a imputação pelo kNN apresentou desempenho superior àquele verificado quando do uso dos demais métodos. |