FILMES AUTOMONTADOS DO CLORETO DE 3-n-PROPILPIRIDÍNIO SILSESQUIOXANO E FTALOCIANINA DE COBRE OBTIDOS PELA TÉCNICA LbL: PREPARAÇÃO, CARACTERIZAÇÃO E APLICAÇÕES

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Jesus, Cliciane Guadalupe de lattes
Orientador(a): Pessoa, Christiana Andrade lattes
Banca de defesa: Marcolino Junior, Luiz Humberto lattes, Anaissi, Fauze Jaco lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE ESTADUAL DE PONTA GROSSA
Programa de Pós-Graduação: Programa de Pós-Graduação em Química Aplicada
Departamento: Química
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/2064
Resumo: Nanostructured films composed by a 3-n-propylpyridinum silsesquioxane polymer (designated as SiPy+Cl-) and copper (II) tetrasulphophthalocyanine (CuTsPc) were produced using the Layer-by-Layer technique (LbL). The deposition of the bilayers was monitored by UV-Vis spectroscopy accompanying the absorbance of Q-band at 617 nm. It was observed that the absorbance linearly increased with the number of SiPy+Cl-/CuTsPc or CuTsPc/SiPy+Cl- bilayers, indicating that the same amount of material was deposited at each step of film formation. FTIR spectra showed that there is a specific interaction by the SO3 - groups of CuTsPc and the pyridinium groups of the polycation, SiPy+Cl-. Morphological studies of films surfaces showed that their roughness and thickness increase with the number of bilayers. The films were employed to detect dopamine (DA) and ascorbic acid (AA) using cyclic voltammetry. It was observed that the number and the sequence of bilayers deposition directly influenced on the electrochemical response in presence of the analytes. LbL films with lower number of bilayers (1 to 5 bilayers) presented higher current values in presence of the analytes, which is attributed to the higher facility of diffusion of target species to the electrode surface and enhancement of the efficiency of the electron transfer process. Considering the sequence of bilayers deposition, it was observed that the CuTsPc/SiPy+Cl- film did not show any redox peaks in the potential range -0.2 V to 1.6 V vs Ag/AgCl in presence of DA and AA. In contrast, the SiPy+Cl-/CuTsPc LbL film, presented a defined oxidation redox peak at approximately 1.2 V for DA and 0.8 V for AA, which linearly increased with DA concentration in HCl 1.0x10-3 molL-1 electrolyte solution (pH 3). Studies in different scan rates for the SiPy+Cl-/CuTsPc LbL film in presence of these analytes showed that the anodic peak current (Ipa) linearly increased with the square root of the scan rate (n1/2 ) which is a typical behavior for systems governed by a diffusion controlled mechanism. The relationship Ipa/ n1/2 vs n resulted in an exponential profile, confirming the existence of an electrocatalytical process for both AA and DA provided by CuTsPc in the LbL film. Using differential pulse technique, films comprising SiPy+/CuTsPc were able to distinguish between DA and ascorbic acid (AA), with a potential difference of approximately with 400 mV, in the concentration range of 9.0x10-5 to 2.0x10-4 molL- 1(in pH 3.0) and detection limits in the order of 10-5 molL-1.