DESENVOLVIMENTO DE UM ADESIVO PARA PRÓTESES REMOVÍVEIS CONTENDO MICROPARTÍCULAS POLIMÉRICAS DE NITRATO DE MICONAZOL: SÍNTESE E CARACTERIZAÇÃO

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Molina, Andrés Felipe Cartagena lattes
Orientador(a): Campanha, Nara Hellen lattes
Banca de defesa: Mima, Ewerton Garcia de Oliveira lattes, Morante, Daniel Rodrigo Herrra lattes, Paula, Josiane de Fatima Padilha de lattes, Urban, Vanessa Migliorini lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE ESTADUAL DE PONTA GROSSA
Programa de Pós-Graduação: Programa de Pós-Graduação em Odontologia
Departamento: Clinica Integrada, Dentística Restauradora e Periodontia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/1705
Resumo: The combination of well-fitting dentures with topical antifungals is appropriate therapeutic approach for denture stomatitis (EP). It was developed and evaluated an adhesive for removable dentures containing miconazole nitrate (NM) incorporated into mucoadhesive and/or pH dependent polymer microparticles aiming at increasing bioavailability. Initially, microparticles have been developed containing 10% and 20% of NM, spray-drying, using Gantrez MS-955 polymer (G10, G20), Eudragit L-100 (E10, E20) or both (EG10, EG20). An analytical method by high-performance liquid chromatography (HPLC) to quantify NM of the microparticles was validated. Microparticles were characterized by scanning electron microscopy (SEM), x-ray diffraction, Fourier-transformed infrared spectrometry (FTIR), differential scanning calorimetry (DSC), in-vitro release studies (percentage of dissolution / time, and release profiles) and antifungal activity. An experimental denture adhesive formulation (ACT) was developed containing 10% by weight of the microparticles (AE1, AG1, AEG1, AE2, AG2, AEG2) or 2% of pure drug (ANM). For all adhesives it was determined: minimum inhibitory concentration (MIC) for Candida albicans (microdilution and agar dilution); adhesive force (FA among acrylic surfaces after 0.5, 1, 3, or 6 h immersion in water); and toxicity to brine shrimp (24 h and 48 h) by calculating lethal concentration 50 (LC50). The HPLC method was proven specific, linear (r = 0.9992), precise, accurate and robust in the range 5-90 μg.mL-1, with running and retention times of 10.0 and 5.58 minutes, respectively. All microparticles showed acceptable performance (37.22% - 55.36%) and encapsulation (over 89%) values. E10 and E20 microparticles showed spherical and smooth surface, while EG20 had similar shape, but rough surface. G10, G20 and EG20 had depressed craters and morphology. The diameters of the microparticles ranged from 1.9 to 4.3 micrometers. No chemical bond was observed between the MN and the polymers through the FTIR spectra. Microencapsulation contributed to the drug amorphization, according to thermal analysis and X-ray diffraction, reducing the release time. NM and the G10, G20 and EG20 microparticles fitted the biexponential release kinetic model and the microparticles E10, E20 and EG10 fitted to mono-exponential model. The microparticles showed antifungal efficiency similar to pure drug. Extracts of the adhesives containing the microparticles and ANM showed MIC of 1.25 to 5 μg.mL-1 (comparable to Daktarin®, 2.5 μg.mL-1). Significant differences in AF for adhesive formulations evaluated as a function of immersion time in water were observed (p <0.001), with an upward trend between 1 h and 3 h, followed by reduction or stabilization up to 6 h. The incorporation of NM and polymeric microparticles did not affect the FA of the experimental adhesive and AEG20 showed the best results, with high initial values, and holding them for 6 h. All adhesive formulations showed low or no toxicity (LC50 349.53 to 931.00 μg.mL-1). The proposed denture adhesive formulation was proven compatible with the incorporation of polymeric microparticles containing NM.