Classificação de sinais eletromiográficos para auxílio ao diagnóstico médico
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Estadual da Paraíba
Pró-Reitoria de Pós-Graduação e Pesquisa - PRPGP Brasil UEPB Programa de Pós-Graduação Profissional em Ciência e Tecnologia em Saúde - PPGCTS |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.bc.uepb.edu.br/jspui/handle/tede/3250 |
Resumo: | Estudo publicado em 2016, na revista Improving Diagnosis in Health Care pelo Institute of Medicine (IMO), afirma que um em dez diagnósticos estão incorretos e que pelo menos uma pessoa em cada três tem experiência relacionada a um erro de diagnóstico. Pesquisadores descobriram que erros em diagnósticos respondem pela maior fração de alegações de negligência e o maior quantitativo de pagamentos de penalidade como multas e indenizações. Na Eletromiografia, do ponto de vista clínico, o diagnóstico das doenças como a Esclerose Lateral Amiotrófica (ELA) e miopatias, nos estágios iniciais é de difícil diagnóstico, à medida que os sintomas dessas doenças podem ser facilmente confundidos com outras doenças. Contudo, neste trabalho é apresentado um sistema para auxílio ao diagnóstico médico (Computer-Aided Diagnosis - CAD), visando ao aprimoramento e ao aumento na eficiência, precisão e rapidez do diagnóstico clínico, capaz de classificar os sinais eletromiográficos automaticamente em saudável, miopatia e ELA, proporcionando uma segunda opinião ao especialista médico. |