Preparação e caracterizações físicas do compósito bioativo PVDF-HApcom potencial para implante ósseo
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Estadual de Maringá
Brasil Programa de Pós-Graduação em Física UEM Maringá, PR Centro de Ciências Exatas |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.uem.br:8080/jspui/handle/1/2715 |
Resumo: | In the absence of a single material that can meet all the requirements of the skeletal system, the research has the objective to produce and characterize composites with the combination of HA and PVDF and check the bioactivity thereof. Thus prepared composites were 20, 40, 60 and 80% HAp the composition sintered at 170°C and 190°C, which are defined as PVDF precursor melting temperatures. The result of the analysis by X-ray diffraction in the samples revealed that the PVDF showed peaks related phases and , the hydroxyapatite was characterized as biphasic (Ha) due to the presence of crystalline phases HAp and -TCP and composites showed peaks relating to Hap, -TCP is PVDF in phase . Vickers hardness in the analysis it was found that the increase in the sintering temperature also increased the hardness of composites, that generally had intermediate values the hardness of precursors. The density results obtained in the composites before immersion in SBF showed that the composite density with 40% HA in the 170°C sintered composition is very close to the density of human bone, and that in general the porosity of the composites increased with increasing hydroxyapatite in the composition, for both temperatures. The impulse excitation technique was observed that both the Young's modulus, the Poisson's ratio obtained by the composite at both temperatures had values equal to the bone, the same was not true for the shear moduli of the samples, which present value slightly higher than the value of human bone. After analyzed with these techniques, the samples were immersed in SBF for 7 days. Microstructural analyzes using the SEM indicated that the composite (60%PVDF-40%HA) showed significant nucleation of the apatite layer showing the bioactivity of the composite. Was performed axial compression test on the sample showed bioactivity and it was observed that the obtained result was greater than the axial compressive strength of bone. Thus it can be concluded that the composite (60% PVDF-40%HA) is a bioactive sintered at 170°C and displays the next physical properties of bone tissue, thus making it a biomaterial potential for bone implant |