Land use and cover drives taxonomic and functional diversity of aquatic insects across tropical streams.

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Contieri, Beatriz Bosquê
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Estadual de Maringá.
Brasil
Departamento de Biologia.
Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais
UEM
Maringa
Centro de Ciências Biológicas
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.uem.br:8080/jspui/handle/1/7561
Resumo: Streams are ecosystems closely dependent to their adjacent ecotones, representing important water recharge sources for drainage networks and playing a central role in global nutrient cycling. The primary source of energy in streams comes from allochthonous material originating from riparian vegetation, which becomes available through processing performed by aquatic organisms. Modifications in the composition of the adjacent vegetation, which can be natural or due to land use and occupation, may alter the ecosystem functioning. Despite their critical role in preserving biodiversity, riparian ecosystems face continuous alteration or even removal. Anthropogenic activities, such as excessive use of pesticides and fertilizers in rural areas, and catchment imperviousness in urban areas, for example, negatively affect water quality, leading to contamination and disruptions in the food chain. Studies predominantly focus on densely forested riparian zones, composed mainly of trees, but natural riparian zones with herbaceous or shrubby vegetation have effects less explored when compared to woody vegetation. These include differences in channel stability and morphology, because woody vegetation is more suitable for stabilization of stream banks than herbaceous vegetation. These differences are particularly relevant for organisms like aquatic insects, that play a fundamental role in energy transfer to higher trophic levels and are widely used as bioindicators, given their sensitivity to environmental changes. Metrics such as richness and abundance are commonly used to estimate levels of biodiversity, but for a comprehensive understanding of the role of such species in ecosystem functioning, it is essential to also consider functional diversity. In this context, the following aspects were assessed: i) the effect of sub-basin riparian vegetation stratum (tree x shrub) on the composition and beta-diversity of aquatic insects in tropical streams and ii) the relationship between different levels of anthropogenic intensification and taxonomic and functional indices of aquatic insects, as well as their relationship with environmental variables. The study concluded that functional diversity was more sensitive than taxonomic diversity to changes related to land use and cover in riparian vegetation. Vegetation stratum (tree and shrub) significantly altered total functional diversity, while anthropogenic intensification significantly reduced all functional indices analysed and only one taxonomic index. The results obtained and analysed contributed to an analytical understanding of the functioning of tropical aquatic ecosystems. Furthermore, the study provides valuable parameters and insights for future predictions and mitigation strategies in environments affected by human activities.