Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Silva, Ricardo Inácio Álvares e |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.uel.br/handle/123456789/13806
|
Resumo: |
Resumo: Este trabalho desenvolve dois algoritmos para decomposição de multiplicação matricial geral (GEMM, do inglês General Matrix Multiplication) em tarefas menores, adequadas à distribuição entre processadores disponíveis em sistemas heterogêneos, como CPUs e GPUs, que têm como objetivo a escalabilidade de desempenho Um dos algoritmos gera tarefas que são multiplicações matriciais menores, independentes entre si, mas com redundância de dados nas transferências entre os processadores O trabalho mostra que esse algoritmo também pode ser utilizado para explorar recursos de GPUs como a sobreposição de operações de transferências e execução de kernels Já o outro algoritmo decompõe multiplicações matriciais em três grupos de tarefas, sendo dois de multiplicações menores e um de somas vetoriais Demonstra-se que apesar das tarefas possuírem independência apenas parcial, podem ser organizadas de tal forma a serem resolvidas concorrentemente Este algoritmo também prevê a viabilidade de redução nas transferências de memória entre os processadores e evita redundância nas transferências de dados O trabalho ainda mostra que tais características são desejáveis para sistemas computacionais heterogêneos baseados em computação de propósito geral na unidade de processamento gráfico (GPGPU, do inglês General Purpose computing on GPU) Por fim, o trabalho apresenta implementações dos algoritmos propostos e seus respectivos desempenhos A experimentação mostra que, em um sistema com duas GPUs, os algoritmos podem melhorar o desempenho de multiplicações em 5%, para matrizes de dimensão 1?1, até acima de 1%, para 4?4 adiante |