Modelagem chuva-vazão utilizando redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Scheidt, Felippe Alex
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.uel.br/handle/123456789/12496
Resumo: Resumo: Este trabalho apresenta uma metodologia para modelagem da relação ao da transformação chuva-vazão de uma bacia hidrográfica utilizando redes neurais artificiais (RNA) acoplada a um algoritmo genético (AG) num intervalo de discretização diário e mensal Esta modelagem foi aplicada na bacia hidrográfica do rio Piquiri, localizada no estado do Paraná, Brasil Os resultados dessa modelagem foram comparados a um modelo autorregressivo de média móvel e demonstraram que as RNAs são mais adequadas para a modelagem da relação chuva-vazão do que os modelos autorregressivos Além disso, comparou-se o desempenho e características das redes neurais artificiais com um modelo híbrido utilizando RNA e AG, onde foi observado que o modelo híbrido obteve melhor representação do processo de transformação chuva-vazão