Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Casas, Gabriela Aline |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.udesc.br/handle/UDESC/12279
|
Resumo: |
O mapa de Hénon é um sistema dinâmico bidimensional a tempo discreto, originalmente proposto como um modelo para a seção de Poincaré do sistema de Lorenz a tempo contínuo, e tem sido extensivamente investigado nos últimos anos. Além da sua grande importância teórica, algumas aplicações práticas são possíveis. Como por exemplo, pode ser usado para modelar lasers de CO2 no limite de forte dissipação. O mapa de Hénon é caracterizado por dois parâmetros, o de não linearidade e o de dissipação. Neste trabalho nós consideramos a situação onde estes dois parâmetros do mapa de Hénon são linearmente modulados pela solução de outro mapa de Hénon, cujos parâmetros são constantes no tempo, mas que podem ser ajustados. Investigamos modulações periódicas e caóticas do primeiro mapa de Hénon devido ao segundo, e mostramos que este método pode destruir ou criar atratores no espaço de fases, bem como produzir mudanças na localização dos pontos onde ocorrem as bifurcações. Mais especificamente, a modulação permite controlar a multiestabilidade (biestabilidade, nos casos considerados) presente no mapa de Hénon, conduzindo o sistema a monoestabilidade. Por fim, investigamos a dinâmica do mapa de Hénon quando seus parâmetros são modulados por um outro mapa de Hénon em um regime próximo ao limite conservativo e em um regime de alta dissipação. Expoentes de Lyapunov, diagramas de bifurcação, bacias de atração, diagramas do espaço de parâmetros e do espaço de fases são utilizados para caracterizar a dinâmica do sistema modulado. |