Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Muraro, Tiago Rossato |
Orientador(a): |
Zeilmann, Rodrigo Panosso |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
https://repositorio.ucs.br/11338/6672
|
Resumo: |
Esta dissertação de mestrado propõe desenvolver um sistema de monitoramento de desgaste de ferramenta durante o processo de usinagem através da medição da potência elétrica do motor de fuso. Os métodos diretos de medição são mais confiáveis, mas só podem ser utilizados quando a ferramenta está fora de operação. As soluções para monitoramento online do desgaste podem ser as medições dos seguintes itens: força de corte, emissão acústica, vibração, corrente elétrica, temperatura de corte, dimensões da peça, sinais ultrassônicos e óticos, acabamento superficial, que podem ser utilizados individualmente ou de forma conjunta, para um melhor monitoramento do processo. Inicialmente é realizada uma revisão sobre o processo de fresamento, o desgaste da ferramenta, os métodos de medição do desgaste, de forma especial, o monitoramento através da medição da potência elétrica. Posteriormente, são evidenciados o método para o cálculo da potência elétrica, os princípios de funcionamento de um motor de indução, o controle de velocidade de motores, o processamento digital de sinais e as redes neurais artificiais (RNAs). Em seguida, é apresentada a metodologia de trabalho, ou seja, como foi desenvolvida a placa de aquisição de dados, quais foram os materiais, equipamentos e métodos utilizados nos ensaios. Os resultados experimentais apresentam a construção e calibração do sistema de aquisição de dados, os ensaios para determinação da potência elétrica consumida pelo motor de fuso em função do desgaste utilizando diferentes condições de usinagem. De posse desses dados, é realizado o treinamento da RNA e a verificação dos resultados são feitos, comparando o valor de desgaste medido com aquele estimado pela rede. A RNA utilizada é uma Feed-Forward, com treinamento através do algoritmo de BackPropagation Levenberg-Marquardt. Este processo obteve resultados satisfatórios e promissores, identificando um potencial grandioso da utilização desta medição da potência elétrica para predição do desgaste da ferramenta de usinagem. |