Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Lorensatti, Edi Jussara Candido |
Orientador(a): |
Azevedo, Tânia Maris de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
https://repositorio.ucs.br/handle/11338/585
|
Resumo: |
Como indicam os Parâmetros Curriculares Nacionais, um dos objetivos do Ensino Fundamental no Brasil é o de que os alunos sejam capazes de questionar a realidade formulando problemas e tratando de resolvê-los (PCN, 1998, p. 27). Na mesma perspectiva, um dos propósitos do terceiro ciclo, que corresponde ao sexto ano do Ensino Fundamental, em Matemática, é o de que os alunos sejam capazes de resolver situações-problema envolvendo números naturais, inteiros, racionais e a partir delas ampliar e construir novos significados para as operações aritméticas (op. cit., p. 64). Assim, a Matemática pode dar sua contribuição à formação do cidadão ao proporcionar a construção de estratégias, a comprovação e a justificativa de resultados (op. cit., p. 27) no desenvolvimento da capacidade para resolver problemas, sejam eles dessa ou de qualquer outra área do conhecimento. O ensino de Matemática não tem só a função evidente de propiciar o desenvolvimento de competências referentes ao manuseio das mais diversas habilidades matemáticas, mas deve ter também a preocupação de promover o desenvolvimento de capacidades como comunicação, argumentação e validação de processos (PCN, 1998, p. 56). Essas, por sua vez, necessitam das habilidades de interpretação e expressão escrita e/ou falada. Aprender a resolver problemas matemáticos na escola é deparar-se com um mundo de conceitos que envolvem leitura e compreensão, tanto da língua materna como da linguagem matemática. A resolução de problemas exige compreensão leitora. Para essa compreensão, o aluno precisa de um referencial linguístico e, para expressar os dados em sentenças matemáticas, de um referencial de linguagem matemática, ambos adequados a cada situação-problema a que for exposto. Oferecer ao aprendiz oportunidades de compreensão do enunciado de problemas, por certo o auxiliarão não só a resolvê-los como também a ampliar e aperfeiçoar o estabelecimento de inferências e de conexões lógicas. Há vários estudos sobre as dificuldades em leitura e sobre as dificuldades na resolução de problemas, separadamente, mas poucos aproximam essas duas áreas do conhecimento. O objetivo desta pesquisa é o de verificar como os mecanismos coesivos, presentes em enunciados de problemas de aritmética, podem se constituir fatores intervenientes na compreensão leitora desses enunciados. Pensa-se ser possível, a partir daí, vislumbrar aproximações entre os estudos sobre língua materna e linguagem matemática, no que tange à compreensão de enunciados de problemas aritméticos. Parte-se do pressuposto de que a não compreensão do enunciado de problemas aritméticos compromete a conversão dos dados apresentados em linguagem matemática e, por conseguinte, a resolução desses problemas. |