Efeitos epigenéticos sobre a diferenciação in vitro de mioblastos e a expressão dos genes CAST e CAPN1 em bovinos

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Oliveira, Alexandre de Lima
Orientador(a): Niciura, Simone Cristina Méo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular - PPGGEv
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/5547
Resumo: Epigenetics can be defined as the study of heritable changes in phenotype without the occurrence of changes in nucleotide sequence. Epigenetic modifications occur by the chemical changes in DNA and their associated proteins, such as DNA methylation and histone acetylation, respectively. Meat tenderness is a trait of great interest worldwide, resulting in the development of the beef livestock sector to produce meat of quality. It is worth to highlight the role of the calpain/calpastatin system on tenderness. Calpain encoded by the CAPN1 gene plays a role in proteolysis posmortem by cleaving proteins from muscle fiber. The calpastatin encoded by the CAST gene, on the other hand, acts controlling this cleavage by blocking the action of calpain. In addition, this system is also involved in myoblast differentiation into myotubes during embryogenesis. This system controls the proteolysis of proteins that constitute the cytoskeleton and the plasma membrane. To mimic the myotube formation during embryogenesis and to study the epigenetic control of CAPN1 and CAST gene expression, satellite cell cultures established from bovine muscle were kept undifferentiated (negative control) or were induced to differentiate by incubation with culture medium containing 2% fetal bovine serum in the absence (positive control) or after treatment with epigenetic modifiers like 5-Aza- 2'-deoxycytidine (Aza, DNA demethylating) for 48 h at 10 &#956;M, and Trichostatin A (TSA, histone acetylating) for 24 h at 50 nM. The results showed no differences (p>0.05) in myoblast rate fusion between Aza, TSA and positive control groups, but there were differences (p>0.05) when these groups were compared to the negative control, which showed lower fusion rates. There was no difference (p>0.05) in cell viability among the four groups, showing that Aza and TSA were not cytotoxic at the used concentrations. Concerning the gene expression, the gene CAST was more expressed (p<0,05) in the positive control group than the negative one; but no differences were seen in the expression (p>0,05) between positive control, 5-Aza-2 - deoxycytidine and Trichostatin A groups. For the CAPN1 gene, no difference was seen in the expression (p>0,05) between negative and positive control groups, but the CAPN1 gene was more expressed (p<0,05) in the 5-Aza-2 -deoxycytidine and Trichostatin A treatments relative to the positive control group. When the expression ratio of CAPN1/CAST were compared between treatments, was seen more expression (p<0,05) in the positive control group both comparing with negative control group and with 5-Aza-2 -deoxycytidine and Trichostatin A treatments. We may conclude that the treatments with the epigenetic modifier agents didn't affect both the bovine myoblast differentiation into myotubes and the CAST gene expression, but did in the CAPN1 gene expression and so did in the expression ratio of CAPN1/CAST.