Aplicação de CLEA de β-amilase de cevada na produção de maltose a partir de amido residual do bagaço de mandioca em reator de fluxo em vórtices

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Silva, Rafael de Araujo
Orientador(a): Tardioli, Paulo Waldir lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Química - PPGEQ
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/7557
Resumo: Cassava is cultivated worldwide, being Brazil the fourth largest producer. The root industrial processing in the country, aiming to obtain mainly flour and starch, generates carbohydrate-rich residues (e.g., starch, cellulose, and hemicellulose), which could be used to produce value-added products by enzymatic route, mainly using immobilized enzymes that are more operationally stable, allowing to be easily recovered and reused in the process. Thus, this work aimed the biotransformation of residual starch from cassava processing in maltose, using immobilized β-amylase in a Couette–Taylor–Poiseuille vortex flow reactor, which can promote perfect mixture under lower shear stress in the reactional medium compared to the conventional stirred-tank reactor. Cassava bagasse and peel of two starch-processing industries from São Paulo State were physicalchemically characterized and showed about 47% and 55% (dry mass) of residual starch, respectively. The starch was enzymatically extracted from the residues using a α- amylase, followed by maltose production catalyzed by immobilized barley β-amylase. Among the immobilization methods studied in this work, the best one for β-amylase was protein aggregation using bovine serum albumin (BSA) or soybean protein (PS) as protein feeder, followed by cross-linking with glutaraldehyde (CLEA technique). This protocol yielded immobilized β-amylase with 82.67% and 53.26% of recovered activity, respectively. Besides, the CLEAs were highly stables at 40oC, retaining more than 80% of the initial activity after 12 hours. The maltose syrup production from starch was performed using a Couette–Taylor–Poiseuille vortex flow reactor, in order to evaluate the β-amylase CLEAs (in this case CLEA of β-amylase prepared with soybean protein, here named CLEA-β-PS). It was achieved around 70% of maltose conversion in a short reaction time (4 hours), showing that is viable the use of residual starch as raw material for the production of maltose catalyzed by β-amylase CLEA in a Couette–Taylor– Poiseuille vortex flow reactor.